Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles
نویسندگان
چکیده
منابع مشابه
Molecular , Supra molecular , and Macromolecular Motors and Artificial Muscles
Recent developments in chemical synthesis, nanoscale assembly, and molecularscale measurements enable the extension of the concept of macroscopic machines to the molecular and supramolecular levels. Molecular machines are capable of performing mechanical movements in response to external stimuli. They offer the potential to couple electrical or other forms of energy to mechanical action at the ...
متن کاملLinear artificial molecular muscles.
Two switchable, palindromically constituted bistable [3]rotaxanes have been designed and synthesized with a pair of mechanically mobile rings encircling a single dumbbell. These designs are reminiscent of a "molecular muscle" for the purposes of amplifying and harnessing molecular mechanical motions. The location of the two cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings can be controlled to b...
متن کاملMyosin cross bridges in skeletal muscles: "rower" molecular motors.
Different classes of molecular motors, "rowers" and "porters," have been proposed to describe the chemomechanical transduction of energy. Rowers work in large assemblies and spend a large percentage of time detached from their lattice substrate. Porters behave in the opposite way. We calculated the number of myosin II cross bridges (CB) and the probabilities of attached and detached states in a...
متن کاملKnitting and weaving artificial muscles
A need exists for artificial muscles that are silent, soft, and compliant, with performance characteristics similar to those of skeletal muscle, enabling natural interaction of assistive devices with humans. By combining one of humankind's oldest technologies, textile processing, with electroactive polymers, we demonstrate here the feasibility of wearable, soft artificial muscles made by weavin...
متن کاملConversion of supramolecular clusters to macromolecular objects
In a reaction proceeding within a nanoscopic volume, supramolecular clusters were transformed to polymer objects while retaining their shape and size. Spatial isolation of the cross-linkable blocks of oligobutadiene that were involved in this stitching reaction was achieved by self-assembly of the molecules that made up the clusters. Thermal activation of cross-linking yielded macromolecules (m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MRS Bulletin
سال: 2009
ISSN: 0883-7694,1938-1425
DOI: 10.1557/mrs2009.179